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Today’s agenda

■ Quantum circuit optimization
■ Equational/re-writing theories
■ Representations for optimization
■ Housekeeping

■ Assignment due today
■ Decide on a project idea if you haven’t already
■ Paper presentations



Paper presentations

■ Last two weeks of class (March 27th & April 3rd)
■ Everyone enrolled will give 1 paper presentation
■ Presentations will be 30 minutes 

■ 20-ish minutes presentation 
■ 10-ish minutes for questions/discussion

■ I’ll post a list of possible papers, but you can choose any (in-scope) paper 
that interests you



Circuit optimization



The circuit optimization problem
          Given some circuit C over a gate set G and cost model c: Circuits(G) → R,
          find some equivalent (as partial isometries) circuit C’ with c(C’) < c(C)

Cost models:

■ T-count (dominant factor in surface code volume)
■ CNOT-count (dominant factor in hardware fidelity)
■ Total gate count (more relevant as T-state distillation gets cheaper)
■ Depth (dominant factor in hardware compute time)
■ T-depth (dominant factor in FT compute time with certain assumptions)



A word on depth

■ Depth = length of a critical path
■ Simple computation! (so don’t mess it up or complicate it)

■ Step through the circuit & update length of outgoing critical paths



Approaches to circuit optimization
Quantum Classical analogue

Re-writing based Peephole-optimization

Re-synthesis based Dynamic re-compilation?

Property/analysis based Dataflow optimization,
Loop optimization, 
All other compiler optimizations



Re-writing



Re-writing

■ Basic strategy: given a database D of re-write rules {c → c’}
■ Scan for a match with the LHS of some rule, replace with RHS
■ Repeat until no re-writes possible
■ Complexity?

■ Effective when not much useful structure (e.g. hardware ansatz)

■ Considerations in designing D
■ Confluence (does the order matter?) 
■ Cost non-increasing (does every rewrite produce a strictly better circuit?)
■ Terminating (does the generic strategy terminate?)
■ Completeness (is every equivalent circuit reachable?)

For reasonable performance, typically need cost increasing rules



Example

Optimize:



(Formal) equational theories

■ Given a gate set G, an equational theory of circuits over G is the equivalence 
closure (reflexive, symmetric, transitive closure) of a relation on G-circuits,  

■ The equational theory is:
■ Sound if 
■ Complete if 

■ A sound & complete equational theory gives a presentation (and vice versa)

■ Typically prove completeness by giving (non-optimal) normal forms

A rewriting system drops these

ev(C) = matrix of C



Example: dihedral group

■ Circuits over <X, T> are (up to global phase) a linear representation of the 
Dihedral group of order 8, Di

8

■ Di
8
 = < X, T | X2 = I, T8 = I, XTX = T-1 >

■ As circuit equalities, 



Circuit presentations

■ Clifford circuits
■ CNOT circuits
■ <CNOT, X, T> (CNOT-dihedral) circuits
■ 2-qubit Clifford+T
■ 3-qubit Toffoli+H⊗H = U(8,D) = Aut(E

8
)

■ 3-qubit Clifford+CS
■ <H, CNOT, Rz(theta)> = U(2n,C)
■ Open questions:

■ n-qubit Clifford+T?
■ n-qubit Toffoli+H?



Equational theories & representations

■ On their own not particularly useful
■ Complete equational theories typically involve going to exponential-size and -time normal forms

■ Help us to understand the structure of gate sets
■ E.g. Circuits over <X, T> are isomorphic to the Dihedral group, hence have known properties

■ Most useful when using a representation that elucidates (or mods out by) 
some relevant structure
■ E.g. Pauli exponentials, sum-over-paths, or the ZX-calculus



Example: Pauli exponentials

■ Recall: Pauli group P
n
 = {i{0,1,2,3}P

1
⊗P

2
⊗…⊗P

n
}

■ Recall: Clifford group C
n
 = {C | CP

n
C† = P

n
}

■ Recall: Pauli exponential R(θ, P) = eiθP = Ceiθ(I⊗I⊗…⊗Z)C†

Proposition: 
    Any n-qubit Clifford+T circuit U with k T gates can be written as 
                   U=R(±𝜋/4, P

1
)R(±𝜋/4, P

2
)...R(±𝜋/4, P

k
)C     where C is Clifford



Computing the Pauli exponential rep

■ Basic idea amounts to this: CR(θ,P) = R(θ,CPC†)C for C Clifford
■ Explicitly, 

■ Writing a Clifford+T circuit as U = C
1
T

1
C

2
T

2
C

3
…C

k
T

k
C

k+1
 we can

■ Write every T gate as a Pauli exponential R(±𝜋/4, Ii-1⊗Z⊗In-i-1), and
■ Commute all Clifford gates through to the right-hand side



Re-writing for T-count optimization

■ Pauli exponentials effectively “mod out” by Cliffords

■ Also have a simple (but incomplete) equational theory:

■ Gives a simple T-count optimization procedure:
■ For each Pauli exponential:

■ Commute right with (3) until it can be merged with another by (1) or (2)
■ If it can’t be merged with any Pauli exponentials, leave where it is



Example

Recall: 



Phase folding

■ The previous Pauli exponential optimization is an example of phase folding
■ Basic idea: use commutation relations & gate cancellations to remove 

extraneous T gates (or other Z-axis rotations)
■ Complexity?

Theorem:
       The Pauli-exponential optimization is optimal for the theory of Clifford     
       equations, Clifford-T commutations, and TT=S



Is it optimal in general?

No! Incomplete theory (doesn’t capture Reed-Muller/spider nest identities)

In Pauli exponential form, 

where ,

Sum of all 4-bit parities is 0 mod 8



Finding the optimal T-count

■ Consider just <CNOT, X, T> circuits
■ As pauli exponentials = strings of R(±𝜋/4, P) where P is in {I,Z}⊗n

■ All such Pauli exponentials commute, so it should be easy, right?
■ Valid spider-nest equations in the Pauli exponential point of view = R13 “up 

to <CNOT, X>”, so valid equations are

Problem: no confluent, terminating, cost-decreasing re-write system!



Re-synthesis



Re-synthesis based optimization

■ Basic idea: compute some mathematical representation of a (sub-)circuit & 
synthesize optimally (or at least efficiently)



Example: <CNOT> resynthesis

■ Re-synthesize (potentially in a larger circuit):

■ First compute matrix representation:

■ Next synthesize e.g. Patel-Markov-Hayes:  



Representations for re-synthesis

■ Re-synthesis relies on understanding the mathematical essence of circuits
■ E.g. n-qubit <CNOT> = GL(n,F

2
)

■ Representation should (generally) be poly-time computable

■ Synthesis should lead to good circuits by some metric

■ A non-example:
■ A not-so great candidate is <CNOT + single qubit rotations> = U(n)
■ Matrix representation is exponential time to compute
■ Generic synthesis produces circuits of size O(4n)
■ ⇒ Not (generally) a good candidate for re-synthesis!



CNOT-dihedral circuits

■ Recall: CNOT-dihedral group (of order 8) = circuits over <CNOT, X, T>
■ As a function of the computable basis, each gate only affects the state or 

phase (i.e. no basis change)

Proposition:
    Any circuit U over <CNOT, X, T> can be written as Dot product

Affine transformation“Phase polynomial”



Example

■ Our standard example,



CNOT-dihedral re-synthesis

■ We talked briefly about this already :)
■ Each term            of the phase polynomial is a rotation of          applied to a 

qubit in some parity                                                 of the bits
■ Ex. synthesize 



T-count optimal synthesis

■ In the phase polynomial framework, spider nest identity is
■ ⇒ Exist distinct phase polynomials that give the same unitary!

■ Idea: view an n-qubit phase polynomial as a length 2n string of coefficients

■ #T gates = # odd terms in this vector = hamming weight of binary residue

■ Equivalent phase polynomials generate an equivalence relation on 



Reed-Muller characterization

Theorem:
       The binary residue of C is equal to the (punctured) Reed-Muller code 
                                                    RM(n, n-4)

Implications:
   - T-count optimization for <CNOT, T, X> equivalent to decoding RM(n, n-4)
   - T-count upper bound of O(n2)
   - 



Phase polynomial synthesis problems

■ The phase polynomial characterization of CNOT-dihedral circuits provides a 
lot of structure for studying synthesis problems

Cost metric Complexity Reduction Lower bound Upper bound

T-count Believed 
NP-hard

Min-distance decoding 
of RM(n, 4-n)

Covering radius 
of RM(n, 4-n)

O(n2)

T-depth Poly-time Matroid partitioning O(1) w/ ancillas O(1) w/ ancillas

CNOT-count NP-hard in 
restricted cases

TSP/MLD O(n2) O(n2)

Poly-time heuristic “gray-synth” (Amy, Azimzadeh, Mosca “On the CNOT-complexity…”)



CNOT-minimizing synthesis

■ Phase polynomial synthesis relies on computing each parity          ,
■ Computing parities is done with CNOT gates
■ Synthesis problem: 

         Given a set S of parities of n bits, what is the minimal number of   
         CNOTs needed to construct a tour of all parities in S?

■ E.g.



Choosing the right sub-circuit

■ May be many ways of dividing up a circuit (so won’t get global optimum)

■ What about other types of sub-circuits? E.g. Cliffords?



Representations of the Clifford group

■ Recall: Clifford group <CNOT, S, H> permutes Paulis
■ ⇒ Clifford circuits can be represented as a permutation on P

n

■ Optimization: action is a linear permutation, so similar to CNOT circuits, can 
represent efficiently by its action on 2n generators of the Pauli group

■ Problem: synthesis problem doesn’t map directly to Gaussian elimination

■ Solution: use the sum-over-paths/affine representation



From phase polynomials to SOP

■ Can extend the phase polynomial representation to Clifford+T circuits using

Proposition:
     Any circuit U over Clifford+T gates can be represented as a sum-over-paths

“Path variable”

“Real” polynomial



Re-writing + phase polynomials

■ The sum-over-paths is not unique:

■ But we can simplify by re-writing the sum-over-paths



Example

■ Recall: SHSHSH = ⍵I



Clifford normalization

■ A Clifford sum-over-paths has the form

Proposition (affine representation):
    The re-write system* →

Cliff
 terminates on a Clifford sum-over-paths in

    polynomial time with a unique normal form called the affine representation

linear

quadratic

affine



Clifford re-synthesis

■ Compute (in poly-time) the sum-over-paths for a Clifford (sub-)circuit
■ Normalize to the affine representation

■ The affine representation factors into                                     where
■ D implements the phase terms conditional on the input |x>
■ P implements the phase terms condition on the output |y>
■ H produces the sum-over-paths indexed by y 
■ V sends |x>|f(x, 0)> to |x>|f(x,y)>
■ U is a binary linear permutation defined by 



Properties of the Clifford normal form

■ Minimal H-count & H-depth 
■ ⇒ Important as the CNOT-dihedral T-count bound implies O(hn2) T gate upper bound over 

Clifford+T where h is the H-depth

■ Reduces synthesis of Clifford circuits to synthesis of U (i.e. CNOT circuits)



The ZX-calculus



The ZX-calculus

■ So far we’ve talked about two representations useful for optimization:
■ Pauli exponentials
■ Phase polynomials/sum-over-paths

■ Their effectiveness lies in non-uniqueness coupled with rewrite rules
■ Uniqueness for Clifford+T implies not poly-time computable
■ Rewrite rules imply the possibility of optimization

■ A complementary representation with similar properties is the ZX-calculus
■ In fact, all methods discussed today have equivalent formulations in the ZX-calculus



ZX diagrams

■ “Generalized circuits” or tensor networks
■ ZX-diagram is a graph with two types of nodes: Z and X spiders

■ Spiders with n outgoing edges correspond to 2n-dimensional tensors

�� ��

= =



Example: CNOT gate



Re-writing ZX diagrams

■ Basic principle: “only connectivity matters”
■ I.e. it doesn’t matter how you draw the graph, it gives you the same tensor up to isomorphism

■ The ZX-calculus comprises a (complete) equational theory on ZX diagrams

Hadamard



Example

■ Let’s do                               one last time



Phase gadgets

■ Diagrams of the form                              are called phase gadgets

■ Phase gadgets are exactly terms of a phase polynomial 
■ phases conditional on a parity of some selection of bits)

■ Using phase gadgets, can do all the same optimizations as with phase 
polynomials/pauli exponentials

Spider nest equation



So what’s the upshot?

■ ZX-calculus is a complete equational theory
■ Unlike Pauli exponentials/sum-over-paths

■ Completeness makes it useful as a theorem-proving tool
■ There always exists a manual proof of equivalence/optimization

■ Drawback to this power is difficulty automating reasoning
■ Rules are not obviously directed
■ In comparison, the sum-over-paths has directed (but incomplete) rules
■ Still, can find effective normalization procedures in ZX for, e.g., Clifford circuits



Comparing representations

Pauli exponentials Sum-over-paths ZX-calculus

Pauli exponential Term of phase polynomial Phase gadget

Commuting string of Pauli exponentials Phase polynomial Adjacent phase gadgets

Equivalent strings of commuting Paulis Reed-Muller identities Spider nest equations

Commuting Cliffords to the end →
Cliff

Clifford normalization 
(pivoting + complementation)

Incomplete equational theory Incomplete (but strictly 
larger) equational theory

Complete equational theory



Readings for next week

■ Posted to the website
■ Xu et al., Quartz: Superoptimization of Quantum Circuits. arXiv:2204.09033
■ Duncan, Kissinger, Perdrix, van de Wetering, Graph-theoretic Simplification of Quantum Circuits with the 

ZX-calculus. arXiv:1902.03178
■ Häner, Hoefler, Troyer, Assertion-Based Optimization of Quantum Programs. arXiv:1810.00375
■ Heyfron, Campbell, An Efficient Quantum Compiler that reduces T count. arXiv:1712.01557
■ Amy, Maslov, Mosca, Polynomial-time T-depth Optimization of Clifford+T circuits via Matroid Partitioning. 

arXiv:1303.2042
■ We don’t have time to discuss these two, but references for phase polynomial techniques

■ As before send me a short (paragraph or two) summary of ONE (1) paper of 
your choice before next class and be prepared to give a short summary of any 
of the papers in class


