CMPT 478/981 Spring 2025
Quantum Circuits & Compilation

Matt Amy



Today’s agenda

Quantum circuit optimization
Equational/re-writing theories
Representations for optimization

Housekeeping
m  Assignment due today
m  Decide on a project idea if you haven’t already
m  Paper presentations



Paper presentations

Last two weeks of class (March 27th & April 3rd)
Everyone enrolled will give 1 paper presentation
Presentations will be 30 minutes

m  20-ish minutes presentation
m  10-ish minutes for questions/discussion

I’1l post a list of possible papers, but you can choose any (in-scope) paper
that interests you



|z1) —E

|72} E
I$3) 1 | |
1) H : i _@ E E o




The circuit optimization problem

Given some circuit C over a gate set G and cost model c: Circuits(G) — R,
find some equivalent (as partial isometries) circuit C’with ¢(C’) < ¢(C)

Cost models:

T-count (dominant factor in surface code volume)
CNOT-count (dominant factor in hardware fidelity)
Fotalgate-eeunt (more relevant as T-state distillation gets cheaper)

Depth-fdominant factor in hardware compute time)
T-depth (dominant factor in FT compute time with certain assumptions)



A word on depth

Depth = length of a critical path

Simple computation! (so don’t mess it up or complicate it)
m  Step through the circuit & update length of outgoing critical paths
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Approaches to circuit optimization

Quantum

Classical analogue

Re-writing based

T

Peephole-optimization

Re-synthesis based

-_.'.'{._.. y Pn'ze
S~

Dynamic re-compilation?
e ———— N

Property/analysis based

cNer T edol  cNob T

Dataflow optimization,
Loop optimization,
All other compiler optimizations
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Re-writing

Basic strategy: given a database D of re-write rules {c — ¢’}
m  Scan for a match with the LHS of some rule, replace with RHS
m  Repeat until no re-writes possible
s Complexity?

Effective when not much useful structure (e.g. hardware ansatz)

Considerations in designing D

Confluence (does-the-order matter?)

Cost non-increasing (does every rewrite produce a strictly better circuit?)
Terminating (does the generic strategy terminate?)

Completeness (is every equivalent circuit reachable?)

For reasonable performance, typically need cost increasing rules
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(Formal) equational theories

_A rewriting system drops these

Given a gate set G, an ¢ tronal theory of circuits over G is the equivalence
closure (reflexive, symmetric, transitive closure) of a relation on G-circuits,

R C (G) x (G)

The equational theory is: /
= Sound if C' e Clp = ev(Cl) = ev(C)

s Complete if ev(C) =ev(C) = C" €[Clp

ev(C) = matrix of C

A sound & complete equational theory gives a presentation (and vice versa)

Typically prove completeness by giving (non-optimal) normal forms



Example: dihedral group

Circuits over <X, T> are (up to global phase) a linear representation of the

Dihedral group of order 8, Di
Di, =<X, T|X?=LT=L XTX=T'>

8 e —
As circuit equalities,




Circuit presentations

Clifford circuits

CNOT circuits _— (/@‘go A +—
<CNOT, X, T> (CNOT-dihedral) circuits
3-qubit Toffoli+HeH = U(8,D) = Aut(E,)
3-qubit Clifford+CS
<H, CNOT, Rz(theta)> = U(2",C)
Open questions:

m  n-qubit Clifford+ l/
m  n-qubit Toffoli+H?

¢ he@ b4 oY NGTteot,ons




Equational theories & representations

On their own not particularly useful

= Complete equational theories typically involve going to exponential-size and -time normal forms

Help us to understand the structure of gate sets

m E.g. Circuits over <X, T> are isomorphic to the Dihedral group, hence have known properties

Most useful when using a representation that elucidates (or mods out by)
some relevant structure

m E.g. Pauli exponentials, sum-over-paths, or the ZX-calculus



Example: Pauli exponentials

Recall: Pauli group P = {i{01.23/p op ®...8P }
Recall: Clifford group C = =

Recall: Pauli exponentlal R(0, P) = eleP = Cele(I®I® 2T
e T T

Proposition:
Any n-qubit Clifford+T circuit U with k T gates can be written as
U=R(&7/4, P )R(+7/4, P)... R(£7/4, Pk)% where C is Clifford




Computing the Pauli exponential rep

Basic idea amounts to this: CR(0,P) = R(0,CPC")C for C Clifford
Explicitly,

h=0—0 E=0 —mm——

cos(0)I + isin(0)P

—="T=" P
—(CPCH)C

Writing a Clifford+T circuitasU=C, T CT,C,...C,T,C,,, we can

= Write every T gate as a Pauli exponential R(zx/4, I"'eZeI" " ) and
=  Commute all Clifford gates through to the right-hand side

ok 2k 00 ok
i0P (0)" L (i6) (i6)

S pk I P
T &TH 2 o T 2 o
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Re-writing for T-count optimization

Pauli exponentials effectively “mod out” by Cliffords

Also have a simple (but incomplete) equational theory:
R(0.P)R(¢'.P) = R(0 +¢', P) (1)

R(0.P)R(0'.—P) =€ R(O_0'.P) (2)
PP'=P'P — R(0,P)R(¢',P')=R(¢,P)R(6,P) (3)
S————— —_——

Gives a simple T-count optimization procedure:
m  For each Pauli exponential:
Commute right with (3) until it can be merged with another by (1) or (2)
If it can’t be merged with any Pauli exponentials, leave where it is



Example
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Phase folding

The previous Pauli exponential optimization is an example of phase folding
Basic 1dea: use commutation relations & gate cancellations to remove
extraneous T gates (or other Z-axis rotations)

Complexity?

Theorem:
The Pauli-exponential optimization is optimal for the theory of Clifford
equations, Clifford-T commutations, and TT=S



Is it optimal in general?

No! Incomplete theory (doesn’t capture Reed-Muller/spider nest identities)

\ Sum of all 4-bit parities is 0 mod 8

In Pauli exponential form,

—

[ n(Gr)=1

%



Finding the optimal T-count

Consider just <CNOT, X, T> circuits / |

As pauli exponentials = strings of R(xxz/4, P) where Pis in {I,Z}

All such Pauli exponentials commute, so it should be easy, right?

Valid spider-nest equations in the Pauli exponential point of view = R13 “up
to <CNOT, X>”, so valid equations are

I1 RG,P):[

PeSC{I,Z}9"s.t. dimspan(S)=4 S —
_ B i
Problem: no confluent, terminating, cost-decreasing re-write system!
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Re-synthesis based optimization

Basic 1dea: compute some mathematical representation of a (sub-)circuit &
synthesize optimally (or at least efficiently)




Example: <CNOT> resynthesis

First compute matrix representation:

Next synthesize e. g Patel-Markov-Hayes:

R%ﬁf’. obo a,-?&*k 0000 qupa'fk’ '000
?$°3] of =7 |#858] — (2558
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Representations for re-synthesis

Re-synthesis relies on understanding the mathematical essence of circuits
= E.g. n-qubit <CNOT> = GL(n,F )

Representation should (generally) be poly-time computable
Synthesis should lead to good circuits by some metric

A non-example:

A not-so great candidate is <CNOT + single qubit rotations> = U(n)
Matrix representation is exponential time to compute

Generic synthesis produces circuits of size G

= Not (generally) a good candidate for re-synthesis!



CNOT-dihedral circuits

Recall: CNOT-dihedral group (of order 8) = circuits over <CNOT, X, T>
As a function of the computa’sle basis, each gate only affectﬁr

phase (i1.e. no basis change)

Xl la®l) CNOT:|zy) = |rz@y) T lz) > e 17z)
— Dil————

Proposition:

Dot product

Any circuit U over <CNOT, X, T> can be written as

o

AZ+b)
%

“Phase polynomial” Affine transformation
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CNOT-dihedral re-synthesis
We talked briefly about this already :) ( >(q 5//\2> F_% (g At S/

Each term a,7 - 7 of the phase polynomial is a rotation of 7% applied to a”
qubit in some parity 7 -y) = |z, © x;, & --- D ;) of the bits )/JBZ)

Ex. synthesize
U ISCLW@L@L@x@Ly,y@z) w = e'1
J —_—
X [T7)— L @
y — _fg— \—I
=g L LT




T-count optimal synthesis

In the phase polynomial framework, spider nest identity 1s de ZATY

w 2 =1
= —<Exist distin ynomials that give the same unitary! —_—
Idea: view an n-qubit phase polynomial as a length 2" string of coefficients

ngEZg}. ayZ-y

on
— [ao ap - - (IQn] c Zg
#T gates = # odd terms 1n this vector = hamming weight of binary residue

Equivalent phase polynomials generate an equivalence relation on Z%"
— 7 — 7 n
MRS NONNR
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Reed-Muller characterization

Theorem:
The binary residue of C is equal to the (punctured) Reed-Muller code
RM(n, n-4)
g
Implications:
- T-count optimization for <CNOT, T, X> equivalent to decoding RM(n, n-4)
- T-count upper bound of O(n?) —— () ( 2 > 7

- CNOTDihy, § = GA(Zy, n)xZZ /RM(n,n — 4)




Phase polynomial synthesis problems

The phase polynomial characterization of CNOT-dihedral circuits provides a

lot of structure for studying synthesis problems

Cost metric
T-count

T-depth

CNOT-count

N

Complexity
Believed
NP-hard
Poly-time

NP-hard in
restricted cases

Reduction Lower bound Upper bound

Min-distance decoding | Covering radius | O(n?)
of RM(n, 4-n) of RM(n, 4-n)

Matroid partitioning O(1) w/ ancillas O(1) w/ ancillas

TSP/MLD o(n?) o(n?)

Poly-time heuristic “gray-synth” (Amy, Azimzadeh, Mosca “On the CNOT-complexity...”)




CNOT-minimizing synthesis

Phase polynomial synthesis relies on computing each parity & - 1/, ay # 0
Computing parities 1s done with CNOT gates
Synthesis problem:
Given a set S of parities of n bits, what is the minimal number of
CNOTs needed to construct a tour of all parities in S?

g {220%% 2, 20B2s PADHDYs, LB2ADTs, ZADE0L




Choosing the right sub-circuit

May be many ways of dividing up a circuit (so won’t get global optimum)

S

What about other types of sub-circuits? E.g. Cliffords?




Representations of the Clifford group

Recall: Clifford group <CNOT, S, H> permutes Paulis

= = Clifford circuits can be represented as a permutation on P_

Optimization: action 1s a linear permutation, so similar to CNOT circuits, can
represent efficiently by its action on 2n generators of the Pauli group

Problem: synthesis problem doesn’t map directly to Gaussian elimination

Solution: use the sum-over-paths/affine representation



From phase polynomials to SOP

Can extend the phase polynomial representation to Clifford+T circuits using

Z 1)*y)

yGZz
\

Proposition:

“Path variable”

Any circuit U over Clifford+T gates can be represented as a sum-over-paths

U:|% € Zy) Zw (Z:9)

A(Z, ) +b)

UEZA

”Real” polynomial




Re-writing + phase polynomials

The sum-over-paths 1s not unique:

1 .
— HH - . E : o Y+yz
Y,2€2L9

But we can simplify by re-writing the sum-over-paths

DD |f(R) —scum 2 ) 9D |f(%)) (E)
X,y X
) (C1)eEeE@N OGN | £(% )y e 2 ) f2EFD | £(Z, P(R))) (H)
XY,z X
D)D) |£(3)) —cip 0V2 Y (~)T P |£(3)) (@)
Xy X



Example

=« Recall: SHSHSH = ol




Clifford normalization

linear
A Clifford sum- over-paths has the // quadratic

Z HED ()P0 | £(Z,9))

gezk \

affine

Proposition (affine representation):

The re-write system™® — . terminates on a Clifford sum-over-paths in

Cliff
polynomial time with a unique normal form called the affine representation

Z ()N 5 @ | £, 8))

gezy



Clifford re-synthesis

Compute (in poly-time) the sum-over-paths for a Clifford (sub-)circuit
Normalize to the affine representation

l
— w L(Z.7 Z.7 o =g
7) = 70 2 HEN-1%ED ) ©|1(2,9)

— rk
YELs

The affine representation factors into w!'PV (8®* ®1,_,)UD where

= D implements the phase terms conditional on the input [x>

m P implements the phase terms condition on the output |y>

m  H produces the sum-over-paths indexed by y

= Vsends [x>|f(x, 0)> to [x>|f(x,y)>

= U is a binary linear permutation defined by [J = w ™" (H®k ® In_k)VJr PYou Dt



Properties of the Clifford normal form

1
: (_1) e :
ez N
: — K@
: X fu(v1) X fu(ye) 5
Tn i SLJ:(In) ] — an—k ‘ fn—k(f,:’j)

Minimal H-count & H-depth

= = Important as the CNOT-dihedral T-count bound implies O(hn?) T gate upper bound over
Clifford+T where h is the H-depth

Reduces synthesis of Clifford circuits to synthesis of U (i.e. CNOT circuits)
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The ZX-calculus

So far we’ve talked about two representations useful for optimization:

m Pauli exponentials
= Phase polynomials/sum-over-paths

Their effectiveness lies in non-uniqueness coupled with rewrite rules

= Uniqueness for Clifford+T implies not poly-time computable
m  Rewrite rules imply the possibility of optimization

A complementary representation with similar properties 1s the ZX-calculus

m In fact, all methods discussed today have equivalent formulations in the ZX-calculus



/X diagrams

“Generalized circuits” or tensor networks
ZX-diagram 1s a graph with two types of nodes: 7 and X spiders

G

Spiders with n outgoing edges correspond to 2"-dimensional tensors

)

Chml= HE R 4 ey ([

g

L= O eI
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Example CNOT gate
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Re-writing ZX diagrams

Basic principle: “only connectivity matters”

m Le. it doesn’t matter how you draw the graph, it gives you the same tensor up to isomorphism

The ZX-calculus comprises a (complete) equational theory on ZX diagrams

Hadamard




Example- O~ = (7 |
= Let’sdo m one last\t—i/ngle/{/_,




Phase gadgets

Diagrams of the form : y are called phase gadgets

S

Phase gadgets are exactly terms of a phase polynomial

m  phases conditional on a parity of some selection of bits)

Using phase gadgets, can do all the same optimizations as with phase
polynomials/pauli exponentials

Spider nest equation




So what’s the upshot?

ZX-calculus is a complete equational theory

m  Unlike Pauli exponentials/sum-over-paths

Completeness makes it useful as a theorem-proving tool

m  There always exists a manual proof of equivalence/optimization

Drawback to this power is difficulty automating reasoning
= Rules are not obviously directed
m In comparison, the sum-over-paths has directed (but incomplete) rules
m  Still, can find effective normalization procedures in ZX for, e.g., Clifford circuits



Comparing representations

Pauli exponentials
Pauli exponential
Commuting string of Pauli exponentials

Equivalent strings of commuting Paulis

Commuting Cliffords to the end

Incomplete equational theory

Sume-over-paths
Term of phase polynomial
Phase polynomial

Reed-Muller identities

Cliff

Incomplete (but strictly
larger) equational theory

ZX-calculus
Phase gadget
Adjacent phase gadgets

Spider nest equations

Clifford normalization
(pivoting + complementation)

Complete equational theory



Readings for next week

Posted to the website
s Xuetal, Quartz: Superoptimization of Quantum Circuits. arXiv:2204.09033
m  Duncan, Kissinger, Perdrix, van de Wetering, Graph-theoretic Simplification of Quantum Circuits with the
ZX-calculus. arXiv:1902.03178
m  Hiner, Hoefler, Troyer, Assertion-Based Optimization of Quantum Programs. arXiv:1810.00375

e craatacan 7 o non] e 210 oot oo o oog
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We don’t have time to discuss these two, but references for phase polynomial techniques

As before send me a short (paragraph or two) summary of ONE (1) paper of
your choice before next class and be prepared to give a short summary of any

of the papers in class



